Archimedean copula estimation using Bayesian splines smoothing techniques
نویسنده
چکیده
Copulas enable to specifymultivariate distributions with givenmarginals.Various parametric proposals weremade in the literature for these quantities, mainly in the bivariate case. They can be systematically derived from multivariate distributions with known marginals, yielding e.g. the normal and the Student copulas. Alternatively, one can restrict his/her interest to a sub-family of copulas named Archimedean. They are characterized by a strictly decreasing convex function on (0,1) which tends to+∞ at 0 (when strict) and which is 0 at 1. A ratio approximation of the generator and of its first derivative using B-splines is proposed and the associated parameters estimated usingMarkov chains Monte Carlo methods. The estimation is reasonably quick. The fitted generator is smooth and parametric. The generated chain(s) can be used to build “credible envelopes” for the above ratio function and derived quantities such as Kendall’s tau, posterior predictive probabilities, etc. Parameters associated to parametric models for the marginals can be estimated jointly with the copula parameters. This is an interesting alternative to the popular two-step procedure which assumes that the regression parameters are fixed known quantities when it comes to copula parameter(s) estimation. A simulation study is performed to evaluate the approach. The practical utility of the method is illustrated by a basic analysis of the dependence structure underlying the diastolic and the systolic blood pressures in male subjects. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
GeD spline estimation of multivariate Archimedean copulas
A new multivariate Archimedean copula estimation method is proposed in a non-parametric setting. The method uses the so called Geometrically Designed splines (GeD splines), recently introduced by Kaishev et al. (2006 a,b) [10] and [11], to represent the cdf of a random variable Wθ, obtained through the probability integral transform of an Archimedean copula with parameter θ. Sufficient conditio...
متن کاملFully Bayesian spline smoothing and intrinsic autoregressive priors By PAUL
There is a well-known Bayesian interpretation for function estimation by spline smoothing using a limit of proper normal priors. The limiting prior and the conditional and intrinsic autoregressive priors popular for spatial modelling have a common form, which we call partially informative normal. We derive necessary and sufficient conditions for the propriety of the posterior for this class of ...
متن کاملSpatially Adaptive Bayesian Penalized Regression Splines (P-splines)
In this paper we study penalized regression splines (P-splines), which are low–order basis splines with a penalty to avoid undersmoothing. Such P–splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. Our approach is to model the penalty parameter inherent in the P–spline method as a heteroscedastic regression function. We develop a full Bay...
متن کاملHeterogeneous Archimedean copula and t-copula with application in credit portfolio modeling
Besides their advantage in modelling tail-dependency, the main drawback of standard non-Gaussian copula is the homogeneity in the tail dependency parameter. Several approaches to solve this are meanwhile developed, hierachical copula, the grouped t-copula and the heterogeneous t-copula as recently described by Luo and Shevchenko [1]. We will show results from a concrete implementation of a fact...
متن کاملFlexible Copula Density Estimation with Penalized Hierarchical B-Splines
The paper introduces a new method for flexible spline fitting for copula density estimation. Spline coefficients are penalized to achieve a smooth fit. To weaken the curse of dimensionality, instead of a full tensor spline basis, a reduced tensor product based on sparse grids Zenger (1991) is used. To achieve uniform margins of the copula density, linear constraints are placed on the spline coe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2007